by: Peter Pronovost, Alan Ravitz and Conrad Grant
 

When an aircraft manufacturer decides to create a new model, it doesn’t ask pilots and crew to identify the best cabin, wings, jet engines, and other parts, and then put all the pieces together. A plane developed that way wouldn’t fly. The company begins with a goal, such as safely carrying 250 passengers nonstop from New York to London in under six hours, and follows a disciplined approach to identify the components and subsystems that meet those requirements.

By contrast, the way we build hospitals and clinics typically happens in a piecemeal, patchwork approach. Institutions purchase hundreds of individual, siloed technologies — each with its own work processes, training, and user interfaces — based on what the market offers. We then plop them into an ICU or operating room and hope that they somehow work together.

The result is a constellation of technologies that rarely connect, to the detriment of patient safety, quality, and value. For example:

  • Different monitors emit alarms that compete with one another for the attention of clinicians, who must sort out which signify serious conditions and which don’t. Sometimes they miss critical alarms amid the noise.
  • Devices, electronic medical records, and even patient beds have electronic information that can help diagnose conditions and assess risks. However, clinicians must consult each one individually, rather than seeing a unified display of information from them.
  • Time that could be spent with patients and their loved ones is instead squandered in front of computer monitors, as clinicians click through dozens of screens in search of relevant information.

All of this leads to needless patient harm, low productivity, excessive costs, and clinician burnout. Doctors and nurses feel as though they’re serving technology, not the other way around. Preventing complications, errors, and other harm too often depends on the heroism of clinicians rather than the design of safe systems.

We need a new approach, one that puts the needs of patients and clinicians first. We need to integrate technology, people, and processes so that they are seamlessly joined in pursuit of a shared goal.

While this is new for health care, it has become routine in other complex, high-risk fields. It is the realm of systems engineering, a field that has contributed to jaw-dropping achievements, such as sending a spacecraft on a nine-year voyage to Pluto and designing a nuclear submarine.

These projects would not have succeeded without clearly defined, measurable goals and a rigorous approach for achieving them.

At Johns Hopkins, we experienced how powerful systems engineering can be when we set out to improve patient safety and quality of care in intensive care units. Patient safety researchers and clinicians from Johns Hopkins Medicine partnered with the systems engineers and systems integrators of the Johns Hopkins University Applied Physics Laboratory (APL). For 75 years APL has supported the Department of Defense and other government agencies as a “trusted agent” to solve critical challenges, such as building satellites and weapons systems on ships.

The APL team guided patients, family members, clinicians, and researchers from nearly 20 medical disciplines through an exhaustive process of defining our goals, understanding our priorities, listing the functions that the system must perform, and determining measures of success. These discussions led us to set the goal of reducing seven of the most common and serious preventable harms facing ICU patients. They included five clinical harms, such as hospital-acquired infections and complications, as well as two “social harms,” lack of respect and misalignment of care with the patient’s goals. No doubt, patients are at risk for more than seven harms. But we had to focus because the Gordon and Betty Moore Foundation, which funded the project, wanted to ensure that we demonstrated results.

In interviews and meetings with stakeholders and through observing clinicians and patients interact, we identified layers and layers of requirements for a system that would achieve our goal. Our solution was Project Emerge, a system that integrates data from several sources into one easy-to-read computer display. It combined data from existing technologies, such as the electronic patient record, with new ones, such as sensors that track patient activity or the angle of a bed. In the same way that pilots get all essential information in cockpit displays, Emerge lets clinicians quickly see if patients are getting all the care necessary to prevent the seven harms. A second computer display helps patients and families engage with their care team and take a more active role in their care.

Read the full article here.

 

Help us spread the word.

If you know someone who is interested in this field or what we are doing at the foundation, pass it along.

Get Involved
 
 

Related Stories